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brain and blood–brain barrier:
Versatile breakers and makers
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Abstract

Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In

the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood–brain

barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the

two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In

this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We

summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood–

brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer’s disease,

Parkinson’s disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these

conditions, contributing to blood–brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angio-

genesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection

and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this

comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain

and at the blood–brain barrier in brain disorders.
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Introduction

Matrix metalloproteinases

Matrix metalloproteinases (MMPs) are calcium-
dependent zinc-endopeptidases of the metzincin
superfamily.1 Structurally, MMPs contain a conserved
Zn2þ-binding motif in the catalytic domain and several
conserved protein domains (Figure 1).2 MMPs are
expressed as inactive zymogens with a pro-peptide
domain (pro-MMPs) that must be removed for MMP
activation. The pro-peptide is part of the ‘‘cysteine
switch,’’ which is an intramolecular complex between
a single cysteine in the pro-peptide domain and the zinc
in the active site. Through cleavage of the pro-peptide,
the cysteine dissociates from the complex, which
activates the MMP enzyme and allows binding and
cleavage of MMP substrates. MMPs also contain an
amino-terminal signal sequence directing the peptide

to the endoplasmic reticulum. In addition, all MMPs,
except MMP-7 and MMP-26, have a hemopexin-like
domain that is connected to the catalytic domain and
is responsible for MMP interactions with substrates,
endogenous inhibitors, and cell-surface molecules.
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History

The first MMP (MMP-1) was identified by Jerome
Gross and Charles Lapiere in 1962 in tadpole.3 In
1968, the first human MMP was discovered in skin
tissue.4 Since then, a large family of MMPs has been
described in various species.1 In 1971, MMPs were
shown to be biosynthesized as inactive precursors
(zymogens) that require activation.5 The first endogen-
ous MMP inhibitor, tissue inhibitor of metallopro-
teinse-1 (TIMP-1), was identified in 1975 and as of
today, four TIMPs (TIMP-1-4) have been described.6,7

In 1990, the ‘‘cysteine switch’’ MMP activation mech-
anism was discovered.8 Since then our understanding of
MMP biology has increased tremendously. Through
the unraveling of the MMP catalytic cycle, we now
know that MMPs also digest non-extracellular matrix
proteins and contribute to the fine-tuning of cellular
processes. In addition, new MMPs – MMP-20,
MMP-26, and MMP-28 – have been identified over
the last 25 years.9–11

Classification

Currently, 24 human MMP homologues have been
described and are categorized into six sub-families: col-
lagenases (MMPs-1, -8, and -13), gelatinases (MMPs-2
and -9), stromelysins (MMPs-3, -10, and -11), matrily-
sins (MMPs-7 and -26), membrane-type metalloprotei-
nases (MT1-6-MMPs, also referred to as MMPs-14,
-15, -16, -17, -24, and -25), and other MMPs
(MMPs-12, -18, -19, -20, -21, -22, -23, -27, and -28;
Table 1).12–14

Function and role

MMPs play a role in normal physiological processes
including tissue morphogenesis, cell migration, and
angiogenesis. MMPs are also involved in pathophysio-
logical processes including wound healing, inflamma-
tion, and cancer. Some speculate that MMPs cleave
extracellular matrix (ECM) proteins to allow infiltrat-
ing cells, including leukocytes, metastatic, and

Figure 1. Matrix metalloproteinase structure. MMPs are divided into distinct structural groups: minimal-domain MMPs, hemopexin-

domain-containing MMPs, gelatinases, and membrane-type MMPs. Minimal-domain MMPs contain an amino-terminal signal sequence

(S) that directs them to the endoplasmic reticulum, a pro-peptide (Pro) that maintains them as inactive zymogens, and a catalytic

domain with a zinc-binding site (Zn2þ). In addition to the domains found in the minimal domain MMPs, hemopexin-domain-containing

MMPs have a hemopexin-like domain that is connected to the catalytic domain via a hinge (h). This hinge region mediates the

interactions with substrates, TIMPs, and cell-surface molecules. Gelatinase-type MMPs contain inserts that resemble collagen-binding

type II repeats of fibronectin (FN). Membrane-type MMPs (MT-MMPs) have a domain that interacts with the membrane. Some MMPs

also have a furin-cleavage site (F). MMPs found in the brain are highlighted in red.
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transformed cells, to penetrate ECM barriers.14,15

However, this is controversial since the first in vitro
studies that associated MMPs with the cleavage of
ECMmolecules were based on experiments using exces-
sive amounts of MMPs. Today, evidence suggests that
ECM cleavage is not a main function of MMPs
in vivo.16

Studies using mass spectrometry indicate that ECM
molecules are MMP substrates and other studies show
that blocking MMPs (e.g., MT1-MMP) prevents leuko-
cytes from crossing artificial collagen and ECM
layers.15,17,18 In these studies, it was demonstrated
that fibroblasts and tumor cells tunnel through dense
barriers of cross-linked type I collagen in vitro or in vivo
via a virtually indistinguishable proteolytic process that
requires MMPs. Furthermore, Ota et al.19 showed that
cancer cells utilize an MT1- and MT2-MMP-dependent
basement membrane transmigration program to intra-
vasate into the vasculature in vivo.

Other studies using MMP knockout (KO) mice and
novel mass spectrometry techniques that allowed
improved tissue analysis revealed a wide MMP sub-
strate spectrum that includes cell surface molecules
and soluble factors such as chemokines, cytokines,
and cytokine receptors.18 MMP-mediated cleavage of
these substrates modulates their activity and represents
an important mechanism of fine tuning cellular pro-
cesses such as inflammation.18,20–22 In essence, MMPs
are critical for remodeling processes in developing and
regenerating tissues.15,18

Expression, activation, and regulation

All MMPs, with the exception of MMP-28, are ubiqui-
tously expressed in mammalian organisms. MMP
expression levels are generally low and only increase
when needed,23 except MMP-2 and MT1-MMP (and
to a lesser extent MMP-9), which are constitutively

Table 1. MMPs in CNS disease.

Nomenclature Class/trivial or alternative name Involvement in CNS diseases

MMP-1 Collagenase-1/interstitial collagenase Neuroinflammationb, epilepsya, ADa, brain cancer

MMP-2 Gelatinase A/72 kDa gelatinase Neuroinflammation, MS, cerebral aneurysms,

stroke, epilepsya, ADa, PDa, brain cancer

MMP-3 Stromelysin-1 Neuroinflammation, MS, cerebral aneurysms, stroke,

epilepsya, ADa, PD, brain cancer

MMP-7 Matrilysin-1/PUMP-1 Neuroinflammationb, stroke, epilepsya, ADa

MMP-8 Collagenase-2/neutrophil collagenase Neuroinflammation, brain cancerb

MMP-9 Gelatinase B/92 kDa gelatinase Neuroinflammation, MS, cerebral aneurysms, stroke,

epilepsy, ADa, PDa, brain cancer

MMP-10 Stromelysin-2 Stroke, epilepsyb, brain cancer

MMP-11 Stromelysin-3 MS, stroke, brain cancer

MMP-12 Macrophage metalloelastase Neuroinflammation, MS, ADb

MMP-13 Collagenase-3 Neuroinflammation, brain cancer

MMP-14 Membrane-type-1 MMP (MT1-MMP) Neuroinflammation, cerebral aneurysms,

MS, PDa, brain cancer

MMP-15 Membrane-type-2 MMP (MT2-MMP) MS, brain cancer

MMP-16 Membrane-type-3 MMP (MT3-MMP) MS, brain cancer

MMP-17 Membrane-type-4 MMP (MT4-MMP) Neuroinflammationa, MSa, ADb, brain cancera

MMP-18 Collagenase 4, xCol4, Xenopus Collagenase

MMP-19 RASI-1 (Stromelysin-4) Brain cancerb

MMP-20 Enamelysin

MMP-21 X-MMP MSa

MMP-23 CA-MMP

MMP-24 Membrane-type-5 MMP (MT5-MMP) MSa, brain cancera

MMP-25 Membrane-type-5 MMP (MT6-MMP) MSa, brain cancera

MMP-26 Matrilysin-2, Endometase Brain cancerb

MMP-27 MMP-22, C-MMP

MMP-28 Epilysin MSa

aMMP mRNA, protein and/or activity levels are elevated but involvement in disease is unclear.
bLimited literature (one to two publications) available to support MMP involvement in the disorders.
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expressed in the brain in both their pro- and activated
forms.24,25 MMPs are generated and then secreted into
the extracellular space in an inactive, latent pro-form
(zymogen), which is activated through proteolysis of
the N-terminal pro-domain (Figure 1). This process
allows rapid regulation of MMP activity, and thus,
controls the availability of cytokines and chemokines.
Consequently, MMPs are pivotal in controlling fast
cellular responses, such as cell migration during
inflammation.

Under physiological conditions, most MMPs are
activated by other MMPs or proteases in the extracel-
lular space, but some MMPs are activated intracellu-
larly by the enzyme furin, or by other mechanisms (e.g.,
phosphorylation). MMP inhibition, on the other hand,
is mediated by tissue inhibitors of metalloproteinases,
TIMPs, that coexist with MMPs.7,26 TIMPs inactivate
MMP activity by binding to them, which under physio-
logical conditions prevents excessive tissue degradation
and injury. Under pathophysiological conditions,
MMPs can be activated by reactive oxygen species
and other factors (e.g., NO, hypoxia, pH) through a
mechanism that likely involves auto-catalytic
activation.27–29

Little is known about transcriptional MMP
regulation and what is known involves inflammatory
signaling. Tumor necrosis factor-a (TNF-a) and inter-
leukin-17 both stimulate MMP-9 transcription through
the transcription factors activator protein-1 (AP-1) and
nuclear factor-kB (NF-kB).30–32 This effect can be
blocked with interferon-g through NF-kB inhibition.33

The endotoxin lipopolysaccharide (LPS) triggers
reactive oxygen species production and p38 kinase
phosphorylation, which activates AP-1 and induces
MMP-9 transcription.34 Figure 2 shows the MMP-9
promotor with one NF-kB and two AP-1 binding
sites. MMP-2, on the other hand, is regulated by
TNF-a and p38-MAPK acting through NF-kB, but

not AP-1 (Figure 2), and a caspase 8-dependent path-
way.35 Together, MMP regulation is not fully under-
stood and varies between cell types in a context-
dependent manner.36,37

MMPs in brain and blood–brain barrier

MMPs participate in many physiological and patho-
logical processes in the brain and at the blood–
brain barrier (Table 2). The blood–brain barrier is the
capillary endothelium that separates blood from
brain.40 Physical barrier function is localized to three
structures that are critical for barrier integrity: the
brain capillary endothelium, the tight junctions
between the endothelial cells, and the basement
membrane (Figure 3).40 First, the brain capillary
endothelium is a barrier for small hydrophilic
compounds. Second, tight junctions seal the clefts
between adjacent endothelial cells, which prevents
uncontrolled paracellular passage of solutes and
makes the brain endothelium a low-permeability bar-
rier.41–43 The major tight junction proteins in the brain
endothelium are claudin-1, claudin-5, occludin, and
zonula occludens-1. Third, the basement membrane,
which is a specialized ECM, connects endothelial cells
with pericytes and astrocytes to form the neurovascular
unit and facilitates communication between the cells
within this unit through receptors such as integrins
and dystroglycans.44,45

Endothelial cells, tight junctions, and basement
membrane are critical for proper barrier function, and
thus, for brain homeostasis and overall brain health. In
turn, pathological disruption of the endothelium, tight
junctions, or the basement membrane impairs barrier
integrity, which can have severe consequences for the
brain and contribute to disease progression.97,98 In this
regard, it has been proposed that MMPs digest tight
junctions and basement membrane proteins, and thus,

Figure 2. MMP-2 and MMP-9 promoter region with putative transcription factor binding sites. The boxes represent binding sites for

the corresponding transcription factors.

TSS: transcription start site; AP-1: activator protein 1; AP-2: activator protein 2; GATA-1: GATA-binding factor 1, erythroid tran-

scription factor, globin transcription factor 1; SP-1: specificity protein 1; NF-kB: nuclear factor-kB, CREB: cyclic AMP response-

element binding protein; p53: tumor protein p53 (modified after Peters et al.38 and Rosenberg39).
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are critical contributors to brain disease and directly
affect brain health.99,100 However, little data exist to
support this since it is technically challenging to dem-
onstrate MMP activity in vivo. For example, Gu
et al.101 show increased MMP activity and higher

permeability at the blood–brain barrier in stroke
during reperfusion in vivo. Yang et al.102 show
increased MMP-2 and MMP-9 mRNA and activity
levels after reperfusion in spontaneously hypertensive
rats with middle cerebral artery occlusion (MCAO).
The authors also observed blood–brain barrier leakage
in the piriform cortex and disrupted tight junction pro-
teins. Inhibiting MMPs prevented the loss of tight junc-
tion proteins, indicating that MMPs disturb barrier
integrity by degrading tight junction proteins.102

Thus, while technically challenging, first evidence show-
ing that MMPs digest tight junctions and ECM pro-
teins in vivo is emerging.

Methods and techniques to study MMPs

MMPs are mostly studied at the mRNA, protein, and
activity levels. MMP mRNA expression has been
demonstrated in several studies using real-time quanti-
tative PCR and microarray analysis.103,104 MMP pro-
tein expression is usually determined by Western
blotting, ELISA, or by immunohistochemistry. To
detect MMP activity in vitro, a widely used technique
– substrate zymography – is employed. Substrate zymo-
graphy identifies MMPs by the degradation of their
substrate and by their molecular weight.105,106 This
method allows determining if the MMP is active or

Figure 3. Blood–brain barrier anatomy. The blood–brain barrier is formed by capillary endothelial cells that are linked by tight

junctions, surrounded by a basement membrane, and astrocytic endfeet. Astrocytes provide the cellular link to neurons; pericytes are

embedded in the basement membrane. In disease, MMP protein expression and activity levels are increased, which is thought to result

in blood–brain barrier leakage, possibly through degradation of tight junction and basement membrane proteins.

Table 2. MMP effects in the brain and blood–brain barrier.

MMPs in physiological

processes

MMPs in pathophysiological

processes

CNS development46,47 Involvement in CNS injuries

and diseases48–52,53

CNS survival54 Blood–brain barrier

leakage55–57

Angiogenesis58 Neuroinflammation59–65

Neurogenesis66,67 Neurotoxicity68–77

Cell fate determintion78 Demyelination79–82

Proliferation and migration

of cell precursors17,83
Tumor angiogenesis58,84–87

Axonal growth and

regeneration88–91
Tumor metastasis82,93

Myelinogenesis and

remyelination47,94

Terminate

neuroinflammation95,96
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latent. All types of substrate zymography originate
from gelatin zymography, which is used to detect the
gelatinases MMP-2 and MMP-9.107 To detect other
MMPs, gelatin is replaced with another substrate
such as collagen, carboxymethylated transferrin, or
casein.104,108–111 Another method to detect MMP activ-
ity in vitro is by using fluorogenic MMP substrates.
These artificial MMP substrates are composed of a
fluorescent dye that is connected via a peptide to a
quencher. Active MMP cleaves the peptide, and thus,
removes the quencher resulting in fluorescence, which is
a direct measure of MMP activity.112

Currently, it is not possible to localize activity
of most MMPs in tissues due to a lack of suitable
reagents. An exception to this is gelatin in situ
zymography, a method that allows detecting MMP-2
and MMP-9. Gelatin in situ zymography is a modi-
fication of substrate zymography in frozen tissue
sections. In this method, an MMP substrate is
transferred onto a frozen section of an unfixed tissue
sample. The substrate is digested by active MMPs in
a time- and dose-dependent manner, which is
visualized with microscopy.113 A further development
of this method is in vivo zymography,114 where sub-
strates are used in a live animal to detect MMP activity
in vivo.115

MMPs in central nervous system disease

Neuroinflammation

Neuroinflammation is defined as an unspecific inflam-
matory event in the brain. All central nervous system
(CNS) disorders discussed here – multiple sclerosis
(MS), cerebral aneurysm, stroke, epilepsy, Alzheimer’s
disease (AD), Parkinson’s disease (PD), and brain
cancer – have a neuroinflammatory component that
involves MMPs.

MMPs contribute to neuroinflammation through
four mechanisms (Figure 4). First, MMPs activate neu-
roinflammatory pathways. This is done indirectly by
activating enzymes that act on signaling molecules
such as cytokines, cell surface receptors, cell–cell adhe-
sion molecules, or clotting factors.59,60 Alternatively,
MMPs directly activate neuroinflammatory pathways.
For example, MT4-MMP has TNF-a-convertase
activity through which transmembrane TNF-a is pro-
teolytically converted into soluble, active TNF-a
(Figure 4(1)).61,62 Second, MMPs themselves act as
neuroinflammatory signaling molecules. Upon stimula-
tion with LPS, apoptotic signals, or in PD, neurons
secrete active MMP-3 into the interstitium, which trig-
gers microglial activation and production and secretion
of pro-inflammatory cytokines (Figure 4(2)).63–65

Figure 4. MMPs in neuroinflammation. MMPs contribute to neuroinflammation through four mechanisms. (1) MMPs activate

neuroinflammatory pathways and/or neurosignaling components. (2) MMPs act as signaling molecules themselves. (3) MMPs contribute

to neuroinflammation-mediated neurotoxicity. (4) MMPs compromise vascular integrity resulting in blood–brain barrier leakage.
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Third, MMPs contribute to neuroinflammation-
mediated neurotoxicity by shedding death molecules
like the Fas ligand, by affecting GABA and glycine
levels, which modulate chloride channel activity, by
stimulating glutamate receptor-mediated excitotoxicity,
or by altering cell–ECM interaction.68–72 However, the
exact mechanisms through which MMPs exert neuro-
toxicity are not fully understood (Figure 4(3)).73–77 And
lastly, neuroinflammation-induced MMPs may proteo-
lyze cerebrovascular basement membrane and tight
junction proteins, which could compromise vascular
integrity resulting in barrier leakage and extravasation
(Figure 4(4)).55–57,79

Together, MMPs are induced by and contribute to
neuroinflammation through various mechanisms.
MMPs also contribute to inflammation-induced barrier
dysfunction and leakage. The combination of both –
neuroinflammation and barrier dysfunction – promotes
progression of several CNS disorders (MS, cerebral

aneurysms, stroke, epilepsy, AD, PD, and brain
cancer), which are discussed in the following sections.

Multiple sclerosis

MS is a neuroinflammatory auto-immune disease that
affects about 1.3 million people worldwide.116 In MS,
the myelin sheaths that cover neuronal axons and nerve
fibers in the brain and spinal cord are damaged, which
disrupts communication and causes a wide range of
disease symptoms.117

The role of MMPs in MS has been studied exten-
sively in animal models and human tissue.118–122 These
studies revealed that MMPs digest myelin basic protein,
which causes demyelination and drives MS progression
(Figure 5(a)).79,81,82 Using the experimental auto-
immune encephalomyelitis (EAE) animal model of
MS, several groups analyzed MMPs in brain, brain
capillary endothelial cells, spinal cord, lymph nodes,

Figure 5. MMPs in multiple sclerosis. (a) Brain endothelial cells and leukocytes secrete MMPs, which are thought to degrade tight

junction and extracellular matrix proteins leading to extravasation of immune cells. (b) Leukocytes, microglia, neurons, and reactive

astrocytes secrete MMPs, which demyelinate neuronal axons.
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and spleen and showed that multiple MMPs were ele-
vated during the EAE peak stage.119,123–128 Specifically,
in EAE mouse and rat models, mRNA, and protein
levels were increased for MMPs-2, -3, -7, -8, -9, -10,
-11, -12, -13, -28, MT1-MMP, and MT6-MMP. In con-
trast, mRNA and protein levels for MT2-5-MMP and
MMP-21 were decreased in lumbar and sacral spinal
cord tissue of EAE mice.129 While the consequence
of decreased MMP levels, particularly those of
MT-MMPs, is unclear, it is well established that
increased MMP levels aggravate disease severity in
EAE rodent models.118,119,125,127,128,130,131

One characteristic of MS is leukocyte extravasation
and transmigration across the brain endothelium into
the CNS. MMPs may facilitate this process by activat-
ing adhesion molecules and degrading the basement
membrane that surrounds blood vessels (Figure 4(1)
and (4)). However, this is controversial since there is
no conclusive evidence. Agrawal et al.118 show selective
MMP-2- and MMP-9-mediated cleavage of dystrogly-
can, which is a linker between astrocyte endfeet and
parenchymal basement membrane molecules. This pro-
cess is located at postcapillary venules, where extrava-
sation occurs.118 But this and other studies, for
example, the study by Buhler et al.119 suggest that
MMPs are involved in immune cell extravasation into
the brain during EAE.

Studies using brain tissue, serum, and cerebrospinal
fluid (CSF) samples from MS patients consistently
found increased protein levels for MMPs-2, -3, -7, -9,
-12, -13, and MT1-MMP.80,120,132–138 In these
studies, leukocytes were identified as a main source of
MMPs, the best-studied of which in MS is MMP-9.
MMP-9 mRNA, protein, and activity levels are
increased in mononuclear blood cells, serum, and
CSF, and correlate with barrier leakage and disease
progression.121,139–143

Immune cells from the blood can cross the blood–
brain barrier via a transcellular (likely no MMPs
involved) or a paracellular (MMPs involved) pathway.
For the latter, it has been reported that T cells, mono-
cytes, and dendritic cells express and release active
MMP-2 and MMP-9, which open the brain endothelial
tight junctions to cross the barrier and migrate into the
brain.118,144–149 After passing the tight junctions,
MMP-2 and MMP-9 cleave the transmembrane recep-
tor b-dystroglycan, which anchors astrocytic endfeet to
the basement membrane.118 In addition, in lesional MS
tissue, MMPs-1, -2, -3, -9, and -19 have been detected in
microglial nodules and microglial-like cells where they
contribute to inflammation and further destabilize the
blood–brain barrier.150,151

One MMP that currently gets attention in the MS
field is MMP-12. MMP-12, also called macrophage
metalloelastase, is assumed to be essential in the

pathogenesis of MS, most likely due to its primary
myelin- or oligodendrocyte-toxic potential and its role
in macrophage extravasation. At the same time,
MMP-12 does not seem to damage the blood–brain
barrier or alter ECM remodeling and deposition.138,152

In contrast, data from other studies show that MMP-12
KO mice with EAE had a significantly worse maximum
severity and disease burden compared with EAE wild-
type control mice, suggesting that increased MMP-12
expression levels are protective in MS.127 An additional
study showed that wild-type and MMP-12 KO mice
with EAE followed a relapsing-remitting course.153

Although both mouse groups had a similar clinical
onset, relapses in MMP-12 KO mice with EAE were
more severe and their residual disability at remission
was higher.

Thus, while it is clear that MMPs contribute to MS,
it is less clear if this occurs by degrading the endothelial
basement membrane, which would facilitate leuko-
cyte extravasation and migration into the brain
(Figure 5(a)). In the brain, leukocytes then release
more MMPs that contribute to the overall MMP
effect of axonal demyelination and neuronal cell death.

Cerebral aneurysms

An aneurysm is a blood-filled balloon-like bulge in the
wall of an artery. The causes of brain aneurysms are
manifold and include aging, atherosclerosis, hyperten-
sion, and severe head injury, all of which are
accompanied by neuroinflammation.154 Most cerebral
aneurysms remain undetected until they rupture, which
is life-threatening.155 Therefore, it is critical to prevent
rupture by securing intracranial aneurysms, which is
accomplished by invasive brain surgery.156 A less inva-
sive approach would be to prevent aneurysms from
forming, which requires understanding of aneurysm
pathology. One theory states that MMPs degrade the
vascular ECM, thereby contributing to localized bal-
looning of a blood vessel and leading to aneurysm for-
mation and growth.157–159 For example, in human
brain samples, protein expression levels of plasmin,
MMP-2, MMP-9, and MT1-MMP were increased in
the aneurysmal wall compared to normal cerebral
arteries and overall MMP-2/MMP-9 proteolytic activ-
ity was higher in aneurysm tissue compared to control
arteries.157

Recent reports also indicate that MMPs are involved
in vascular calcification,160,161 which could be another
negative effect MMPs contribute to the pathological
outcome of cerebral aneurysms. In a retrospective
review, the authors showed that the presence of calcifi-
cation in an aneurysm was the sole marker of adverse
outcome.162 Larger aneurysms tended to be more likely
to be calcified, while size by itself did not have an
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adverse effect on outcome. Furthermore, in surgically
securing intracranial aneurysms, calcified aneurysms
are a significant source of morbidity.162

One possibility to limit aneurysm progression
and growth is through MMP inhibition, which
could potentially reduce the need for invasive treat-
ment.163,164 Pre-clinical studies show that MMP inhibi-
tors block aneurysm formation and growth.164–166

Xiong et al.166 demonstrated in a mouse model of
Marfan syndrome that inhibiting MMP-2 and MMP-
9 protein expression with doxycycline blocked ECM
degradation, which significantly delayed aneurysm rup-
ture. Nuki et al.165 used a mouse model, where 70% of
animals develop brain aneurysms and demonstrated
that doxycycline reduced the incidence of aneurysms
to 10%. The authors also showed a reduced incidence
(40%) of intracranial aneurysms in MMP-9 KO mice,
whereas over 60% of MMP-2 KO mice still developed
cerebral aneurysms, suggesting that MMP-9 is critical
for aneurysm formation. Aoki et al.167,168 used statins
in rats, where cerebral aneurysms were induced by uni-
lateral ligation of the common carotid artery and
hypertension. Statin treatment decreased aneurysm
size by 30–40% within one month likely through a
mechanism that lowered MMP levels, which is thought
to delay aneurysm formation and growth.164 The thera-
peutic benefit of statins is attributed to their choles-
terol-lowering, anti-inflammatory, and anti-NF-kB
effects, which lower MMP activity.164 Statins
have also been studied in humans. Yoshimura et al.169

conducted a retrospective study analyzing data from
117 patients with ruptured brain aneurysms and 304
patients with unruptured brain aneurysms to assess if
statins prevent rupture. In this study, 9% of patients
with ruptured cerebral aneurysms used statins, whereas
26% of patients with unruptured aneurysms used sta-
tins, which indicates that statins lower the risk of brain
aneurysms to rupture.

Together, MMPs contribute to formation, growth,
and rupture of cerebral aneurysms by digesting the
ECM, which leads to ballooning of blood vessels.
This suggests that inhibition of MMPs, especially
MMP-9, could potentially prevent cerebral aneurysms.

Stroke

In 2012, stroke accounted for about seven million deaths
worldwide, which is 12% of all deaths and makes stroke
the number two killer.170 With an additional 10 million
people surviving a stroke each year, over 30 million
people altogether survived a previous stroke.171 Stroke
is characterized by a loss in brain function due to limited
cerebral blood flow (ischemic) caused by a blocked
blood vessel, or due to bleeding into the brain paren-
chyma or subarachnoid space (hemorrhagic).

In stroke, MMPs have detrimental effects in the
acute phase and beneficial effects in the post-stroke
phase.172 Detrimental effects are mediated by dysregu-
lated MMPs and include neurovascular disruption and
brain parenchymal damage (Figure 6(a)). Various stu-
dies in human and rat brains show that protein and
activity levels of MMPs-2, -3, and -9 are increased
after stroke and MCAO compared to control
tissue.173,174 These changes in MMP protein and activ-
ity levels result in aberrant proteolysis that contributes
to blood–brain barrier dysfunction and in part deter-
mines the extent of the infarct.132,173–177 In addition,
studies using rat stroke models suggest that by degrad-
ing the basal lamina, MMPs predispose brain capil-
laries to rupture and hemorrhagic transformations
after stroke.178–180 Other examples of detrimental
MMP effects in stroke were shown in studies using
rodent models of focal cerebral ischemia. In these stu-
dies, increased MMP-9 protein levels were detected in
the acute phase (2–24 h) after stroke that coincided with
an opening of the blood–brain barrier. In contrast,
MMP-2 protein levels were increased several days
after stroke,181,182 during which barrier leakage is pre-
sumably restored.

While most MMP research in stroke is focused on
MMP-2 and MMP-9,183,184 other MMPs also have det-
rimental effects. Suzuki et al.185 treated mice after
thrombotic MCAO with tissue-type plasminogen acti-
vator (tPA) and observed an increased incidence of
intra-cranial bleeding compared to mice not treated
with tPA. The authors showed increased MMP-3
mRNA and protein levels in the capillary endothelium
in the infarct region of tPA-treated mice compared to
tPA-untreated control mice. Suzuki et al.185,186 con-
cluded that in tPA-treated mice, MMP-3 digests the
neurovascular basal lamina, thereby opening the
endothelial barrier and contributing to intra-cranial
bleeding. These findings suggest that MMP-3 has
detrimental effects during tPA treatment or is
induced by tPA, which is unfortunate since tPA is cur-
rently the only FDA-approved treatment for ischemic
stroke.

However, MMPs also have beneficial effects during
the recovery phase after stroke (Figure 6(b)).187 Studies
suggest that MMP-9, MMP-2, and MMP-7 remodel
lesional ischemic and infarct tissue and participate
in angiogenesis, vasculogenesis, and neurogen-
esis.17,83,94,188–190 Two mechanisms have been identified
by which MMPs exert these effects. First, during tissue
remodeling in the post-stroke recovery and healing
phase, MMPs digest old ECM so that new ECM and
tissue can be generated.2,187,191 Second, during ECM
digestion, MMPs (mainly MMP-7 and MMP-9, but
also MMPs-1, -2, -3, -10, and -11) increase the avail-
ability of growth factors (e.g., nerve growth factor,
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brain-derived neurotrophic factor, neurotrophin-3/-4,
and vascular endothelial growth factor). This occurs
through cleaving inactive growth factor precursors
into their active form or through releasing active
growth factors by ECM proteolysis.54,188 Increased
levels of growth factors support tissue remodeling by
stimulating angiogenesis, vasculogenesis, and neuro-
genesis, all of which are critical in stroke recovery.
These findings suggest that during the remodeling and
healing process, MMPs are involved in the migration
of neuronal precursor cells to areas damaged by
stroke.17,83

Together, MMPs are essential in stroke in both the
acute phase and the post-stroke phase (Figure 6). In the
acute phase, MMPs impair barrier integrity and
damage the parenchymal tissue, whereas in the post-
stroke phase MMPs contribute to the recovery process
by remodeling lesional ischemic and infarct tissue and
by participating in angiogenesis, vasculogenesis, and
neurogenesis.

Epilepsy

The World Health Organization estimates that at least
65 million people worldwide suffer from epilepsy.192–194

Epilepsy describes various diseases and seizure syn-
dromes, and patients are diagnosed with epilepsy after
recurring, unprovoked seizures.195

The role MMPs have in epilepsy is still unclear, but
studies suggest MMPs contribute to epileptogenesis,
epilepsy progression, and brain remodeling after seiz-
ures. For example, MMP-9 KO mice are less sensitive
to chemically-induced seizures compared to wild-type
mice, and conversely, human MMP-9-overexpressing
rats are more sensitive to chemical seizure induction,
suggesting MMP-9 affects epileptogenesis and/or seiz-
ure genesis.196,197

MMP levels are increased in the epileptic brain. In
chemically induced animal seizure models and patients
with temporal lobe epilepsy, MMP-9 protein and activ-
ity levels are increased in neurons of the parietal and

Figure 6. MMP-9 in stroke. (a) acute phase: endothelial cells and recruited leukocytes secrete MMP-9, which degrades the

blood–brain barrier, the neurovascular basement membrane, and the ECM. (b) remodeling phase: astrocytes and neurons secrete

MMP-9, which contributes to remodeling of the ECM in the neurovascular unit.
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frontal cortex, as well as the thalamus, the regions
where the seizures originated.73,197–200 Li et al.201

detected increased MMP-9 protein and activity levels
in CSF from adult epilepsy patients with generalized
tonic–clonic seizures compared to age-matched non-
epileptic individuals. MMP-9 levels were also increased
in serum from patients after seizures. Suenaga et al.202

detected threefold higher MMP-9 protein levels in
serum from children with encephalopathy after pro-
longed febrile seizures compared to serum from healthy
children. The authors also found higher serum MMP-9
levels in children with prolonged febrile seizures but no
encephalopathy, in children with simple febrile seizures,
and in children with convulsive status epilepticus com-
pared to healthy children.202 Research suggests that
increased MMP-9 protein and activity levels mainly
serve two functions: first, MMP-9 contributes to sei-
zure-induced neuronal cell death; and second, MMP-9
is critical in remodeling neuronal networks after seiz-
ures. Jourquin et al.75 and Hoehna et al.73 demon-
strated neuronal cell death in areas with increased
MMP-9 levels after seizures and showed that inhibiting
MMP-9 reduced cell death. Other studies show that
MMP-9 is involved in structural remodeling, mossy
fiber sprouting, diminished seizure-induced pruning
of dendritic spines, and decreased aberrant
synaptogenesis.197,199,203

MMP-2 function in the epileptic brain is less under-
stood than that of MMP-9. Jourquin et al.75 demon-
strated that MMP-2 does not contribute to neuronal
cell death in epilepsy. However, it is conceivable that
MMP-2 contributes to structural remodeling in epilep-
togenesis since MMP-2 mRNA, protein, and activity
are increased after seizures.197,199,204

Several studies demonstrate blood–brain barrier dys-
function in epilepsy and seizure-induced barrier leak-
age.205–210 Additionally, barrier leakage itself triggers
seizures, suggesting a pernicious feedback loop contri-
buting to epilepsy progression.210–212 In this regard,
MMPs most likely degrade tight junction and ECM
proteins, which potentially contribute to barrier leak-
age after seizures.98–100 Li et al.201 showed that
increased MMP-9 protein and activity levels in serum
and CSF of patients with generalized tonic–clonic seiz-
ures correlate with barrier leakage. Furthermore, bar-
rier leakage is associated with leukocyte extravasation
into the brain after seizures. Leukocyte extravasation is
a complex, multi-step process that requires MMPs, in
particular MMP-2 and MMP-9, both from the endo-
thelium as well as from activated T cells and macro-
phages.188,147,149,213 Li et al.201 demonstrated in patients
with generalized tonic–clonic seizures that increased
CSF leukocyte counts correlated with increased
MMP-9 levels in CSF and the degree of barrier
leakage.201

Thus, MMP-2 and MMP-9 seem to contribute to
seizure- and/or epileptogenesis, neuronal network
remodeling, neuronal cell death, and barrier leakage
after seizures. Little is known about other MMPs in
epilepsy.

Alzheimer’s disease

AD is a neurodegenerative disorder that affects more
than 20 million patients globally.214,215 Disease projec-
tions are grim and predict up to 100 million AD
patients by 2050.216 Despite all research efforts, AD
etiology and progression are not well-understood and
a cure or prevention is currently not available. AD
pathology is characterized by brain accumulation of
amyloid-b (Ab), development of Ab plaques, formation
of neurofibrillary tangles, and neuroinflammation, all
of which contribute to neurodegeneration.217,218 In
this section, we first describe what is currently known
about MMPs in AD and then describe the relationship
between Ab and MMPs.

Several groups have reported that MMP levels in
rodent AD models are increased compared to control
animals. Yan et al.219 detected increased MMP-9 pro-
tein levels in brain slices from transgenic APPsw and
amyloid precursor protein (APP)/PS1 mice compared
to wild-type mice. Using 5xFAD mice, Py et al.220

found increased MMP-2, MMP-9, and MT1-MMP
protein levels in the hippocampus compared to control
mice. MMP-2 and MMP-9 were primarily expressed in
astrocytes; MT1-MMP was localized to neurons;
MMP-9 and MT1-MMP were also detected in amyloid
plaques. Consistent with these findings, several groups
found overexpression of MMP-2, -3, and -9 mRNA
and protein in postmortem brains from AD
patients.221–224 Horstmann et al.225 used zymography
and detected MMP-2, -3, -9, and -10 activity levels in
serum and CSF from AD patients and compared them
to gender- and age-matched healthy control individ-
uals. The authors found that MMP-3 activity was ele-
vated by 40% in plasma and 60% in CSF from AD
patients compared to control individuals. MMP-2
activity in the CSF of AD patients was decreased by
32% compared to CSF samples from healthy individ-
uals, while activity levels in plasma remained
unchanged. MMP-9 and MMP-10 activity were
undetectable in CSF, MMP-10 activity was unchanged
in plasma, and MMP-9 activity in plasma was
decreased by 41% compared to healthy individuals.
Lorenzl et al.226 detected higher levels of proMMP-9
protein in plasma samples from AD patients compared
to control individuals.

Some research aimed at clarifying the relationship
between MMPs and Ab. Deb and Gottschalk227

observed in rat hippocampal and astrocyte cultures
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that Ab40 induced protein expression and proteolytic
activity of MMPs-2, -3, and -9. We demonstrated that
exposing isolated rat brain capillaries to Ab40 ex vivo
increased MMP-2 and MMP-9 protein and activity
levels.228 We made similar observations in a transgenic
mouse AD model (Tg2567 hAPP mice), where MMP-2
and MMP-9 levels in brain capillaries were elevated
compared to capillaries from wild-type mice. Yin
et al.229 observed in APP/PS1 mice that astrocytes sur-
rounding amyloid plaques secrete more MMP-2 and
MMP-9. They also demonstrated that breeding APP/
PS1 mice with MMP-2 or MMP-9 KO mice, or
pharmacologically inhibiting MMP-2 or MMP-9 in
APPsw mice increased Ab brain levels by 1.5-fold com-
pared to controls and increased Ab half-life by about
50%.229 Additionally, Yin et al. observed in the phos-
phate buffer-soluble fraction of cortex and hippocam-
pus of MMP-2 KO mice increased murine Ab40 and
Ab42 compared to age-matched wild-type mice,
whereas Ab40 and Ab42 were unchanged in the phos-
phate buffer-insoluble fraction. In the cortex and
hippocampus of MMP-9 KO mice, murine Ab42 levels
were increased in the phosphate buffer-soluble fraction
of hippocampus and cerebral cortex compared to age-
matched wild-type mice, while they remained
unchanged in the phosphate buffer-insoluble fraction.
These effects were due to decreased Ab proteolysis and
not to increased Ab production. These findings suggest
that MMPs potentially contribute to Ab clearance. In
this regard, MMPs-2, -3, and -9 proteolytically degrade
Ab.219,230,231,232 Ridnour et al.233 showed that levels of
Ab1–16, a product of Ab metabolism by MMP-9, and
MMP-9 activity were decreased in brain lysates of
hAPPSwDI mice lacking nitric oxide synthase com-
pared to their littermates expressing nitric oxide syn-
thase. Based on these data, the authors concluded
that nitric oxide is potentially involved in clearing pla-
ques through increasing MMP-9 activity. Yan et al.219

demonstrated in brain slices of APP/PS1 mice in situ
that MMP-9 digests both fibrillary Ab42 as well as com-
pact amyloid plaques. In another study, Wang et al.234

examined in vivo the relationship between MMP-9 pro-
tein expression and Ab plaques by deleting the MMP-9
gene in APP/PS1 mice. In the cortex and hippocampus
of these APP/PS1 MMP-9 KO mice, Ab plaques were
larger in size and number compared to APP/PS1 mice
with functional MMP-9. Finally, Liao et al.235 demon-
strated that MT1-MMP degrades both soluble and
fibrillary Ab peptide in a time-dependent manner
in vitro and this effect is inhibited by the MMP
inhibitors GM6001 and TIMP-2. The authors also
showed that MT1-MMP degrades brain fibrillary amyl-
oid plaques in another AD mouse model (hAPPSwDI
mice) in situ.

These findings suggest an inverse relationship
between MMP-2/MMP-9 and Ab, where one would
expect low MMP levels in the AD brain with high Ab
load. However, MMPs are upregulated in the AD
brain, which is counterintuitive considering the above-
mentioned findings. One explanation for this could be
that MMP-mediated Ab degradation is too low to pre-
vent Ab brain accumulation. While MMPs might be
involved in processing Ab and clearing plaques, they
are likely not major players in this process.219,229

Thus, MMPs are increased in the AD brain, but the
role of MMPs in AD is unknown. The current litera-
ture is unclear on whether changes in MMP levels con-
tribute to AD progression or might have beneficial
effects on the disease. While it is possible that MMPs
play no major role in AD, studies show that MMPs
could potentially be involved in processing Ab and
AD progression.

Parkinson’s disease

PD is a neurodegenerative movement disorder with
more than six million patients worldwide.236 PD was
first described by James Parkinson237 in 1817, but to
this day, many aspects of the disease are unknown. At
the molecular level, PD is characterized by accumula-
tion of a-synuclein in dopaminergic neurons, resulting
in the formation of Lewy bodies, cell damage, and
neuronal death of dopaminergic neurons. PD is also
accompanied by neuroinflammation aggravating the
disease.238,239

In recent years, MMPs have received some attention
in the PD field. Lorenzl et al.240 determined protein
expression and activity levels of MMPs-1, -2, and -9
in postmortem brain tissue from PD patients and age-
matched control individuals. While the authors
observed no change in MMP-1 and MMP-9, they
detected a 50% reduction in MMP-2 activity levels in
the substantia nigra of PD patients compared to con-
trol individuals. The authors suggested reduced MMP-
2 activity could help neurite outgrowth of surviving
dopaminergic neurons in the substantia nigra.240

In addition to MMPs-1, -2, and -9, PD research has
focused mainly on MMP-3. Three mechanisms have
been suggested on how MMP-3 could be involved in
PD. First, using in vitro cell lines and primary cultures
of dopaminergic neurons from rat, Choi et al.241

observed that active MMP-3 is released from apoptotic
dopaminergic neurons and that MMP-3 protein levels
are higher compared to healthy, non-apoptotic dopa-
minergic neurons. Using the MTPT mouse PD model,
Chung et al.238 found increased MMP-3 protein and
activity levels compared to control mice resulting in
apoptosis and cell death. MMP-3 was also involved in
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caspase-3 activation, specifically in apoptotic signaling
upstream of caspase-3 and downstream of c-Jun
N-terminal kinases.238,241–244

Second, MMP-3 might potentially be involved in
a-synuclein cleavage. Sung et al.245 showed that
MMP-3 cleaves purified a-synuclein in vitro and that
a-synuclein aggregation increased in the presence of
MMP-3-cleaved a-synuclein fragments compared to a
solution without these fragments. Furthermore, aggre-
gates of a-synuclein fragments were more toxic in cell
viability assays compared to aggregates of non-
fragmented a-synuclein. Sung et al.245 also demon-
strated that MMPs-1, -2, -9, and MT1-MMP cleave
purified a-synuclein as well, however, they were less
effective than MMP-3. Moreover, Kim et al.246

showed in microglia cultures and in a 6-OHDA
mouse PD model that a-synuclein-induced MT1-
MMP expression supports cell migration of reactive
microglia into the pathological region, which acceler-
ated PD pathogenesis.

Third, recent data indicate involvement of neuroin-
flammatory events such as microglial activation,
T-leukocyte infiltration, and blood–brain barrier dys-
function in PD.238,247–249 This is consistent with data
from Chung et al.,238 who showed infiltration of
peripheral immune cells and brain uptake of FITC-
albumin (70 kDa) in the MPTP mouse PD model, indi-
cating neuroinflammation and barrier leakage. The
authors showed in MMP-3 KO mice that barrier leak-
age was attenuated and the number of immune cells
infiltrating the substantia nigra was decreased, demon-
strating MMP-3 involvement in the MPTP mouse
model.

In conclusion, MMP-3 seems to be involved in dopa-
minergic neurodegeneration, neuroinflammation, and
barrier leakage in PD. More research will have to clar-
ify the role MMPs play in PD and if MMP inhibition
could be a valid therapeutic strategy.

Brain cancer

In 2012, more than 250,000 people were newly diag-
nosed with brain cancer and nearly 190,000 patients
died worldwide.250,251 Survival rates for adult brain
cancer patients are low. Even with aggressive therapy,
median survival of patients with glioblastoma multi-
forme, the most common and deadliest malignant
brain cancer, is only 12–17 months.252–254 Thus, to
effectively treat brain cancer, new approaches and inter-
ventions are desperately needed.

MMPs are potential therapeutic targets in cancer
because they play a role in cancer biology. In this
regard, mRNA and protein overexpression of MMPs-
1, -2, -3, -7, -8, -9, -13, and MT1-MMP has been

observed in many malignant peripheral and CNS
tumors, and a correlation between MMP expression,
tumor aggressiveness, tumor stage, and prognosis
has been demonstrated.255,256 Indeed, secreted MMPs
(MMPs-1, -2, -3, 7-, -8, -9, -10, -11, -13) as well as
membrane-bound MT-MMPs are critical for the for-
mation of cancer metastases, their invasion into the
brain, and the formation of secondary tumors, and
MMPs participate in most of the steps of the metastasis
process (Figure 7).84,92

1. Formation of metastatic cells at the primary tumor:
Ii et al.256 showed in primary tumors that MMP-7
converts the transmembrane cell–cell adhesion pro-
tein E-cadherin into a soluble protein resulting in
ineffective binding between tumor cells, which
allows cancer cells to split from the primary tumor
and form metastases that can enter the bloodstream.

2. Intravasation of metastatic cells into the blood cir-
culation: Juncker-Jenson et al.257 found that MMP-1
participates in the intravasation of metastatic cells
from a human HEp3 epidermoid carcinoma graft
in chick embryos. The authors showed that
MMP-1 regulating endothelial permeability and
transendothelial migration supported tumor inva-
sion by activating the endothelial non-tumor/non-
matrix receptor PAR1. The authors also used
grafts with naturally acquired or experimentally
induced MMP-1 deficiency and found that intrava-
sation was decreased by more than 80%.257

3. Metastatic cell adhesion to the brain capillary endo-
thelium: it is unclear if MMPs participate in this step
of the metastasis process but given the various func-
tions MMPs have it is conceivable. Hummel et al.258

showed that MMPs-2, -3, -9, and -12 are involved in
the shedding of cell adhesion molecules (e.g., vascu-
lar cell adhesion molecule-1, intercellular cell adhe-
sion molecule-1) from the plasma membrane of
human brain endothelial cell cultures after TNF-
a-induced MMP upregulation. MMPs might also
contribute to shedding CD44 in metastatic cell
adhesion to the capillary endothelium.259 This is par-
ticularly interesting since CD44 is a cell-surface
glycoprotein in endothelial cells, leukocytes, and
many metastatic cancer cells, where it presents selec-
tins thereby facilitating adhesion of the host cell to
the brain capillary endothelium.260–262

4. Metastatic cell extravasation: MMPs contribute to
metastatic cell extravasation and facilitate paracellu-
lar transmigration of tumor cells across brain capil-
lary endothelial cells in vitro and the blood–brain
barrier in vivo.183,263–265 Lee et al.264 showed that
MMP-2 contributes to the migration of breast
cancer cells across the cell monolayer of an in vitro
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human blood–brain barrier model. Lorger and
Felding-Habermann265 demonstrated in vivo that
breast cancer cells injected into the left internal car-
otid artery of BALB/c mice resulted in brain metas-
tases. For paracellular extravasation, endothelial
cell–cell contacts have to be loosened so that meta-
static cells can migrate across the endothelium. This
requires junction proteins to be degraded. Indeed,
MMPs proteolyze tight junction and adherence junc-
tion proteins, thereby opening the paracellular
route.99,100,255,263 Feng et al.99 demonstrated in leu-
kemic BALB/c nu/nu mice that leukemic cells secrete
MMP-2 and MMP-9, which degraded the tight junc-
tion proteins zonula occludens-1, claudin-5, and
occludin. Thus, MMPs are critical for leukemic
and other cancer cells to cross the capillary endothe-
lium and access the brain.

5. Metastatic cell adhesion to the ECM: several mem-
brane-type MMPs (MT1-, 2-, 3-, 5-MMP) shed the
cell-surface glycoprotein CD44, which is critical in
metastatic cell adhesion to the luminal endothelial
membrane and the ECM on the basolateral side of

the endothelium.259,266–268 CD44 is involved in pre-
senting cytokines, chemokines, cell adhesion mol-
ecules, growth factors, and other proteins such as
MMP-2 and MMP-9 to receptors on metastatic
and endothelial cells and mediates signaling that
regulates metastatic cell migration and inva-
sion.267,269 CD44 also interacts with ECM proteins
like fibronectin, thereby supporting metastatic cell
adhesion to the ECM.270

6. MMPs in ECM proteolysis: localized opening of the
ECM (Figure 7) is necessary for metastatic cells to
bypass it and MMP-2 and MMP-9 seem to support
this process through ECM proteolysis. Wang
et al.271 compared MMP-2 and MMP-9 levels in
human glioma samples with those from control indi-
viduals and showed that MMP-2 and MMP-9 levels
in gliomas were increased and correlated with the
degree of glioma malignancy. The authors also
showed that MMP-2 and MMP-9 staining in gli-
omas was localized to the cytoplasm of tumor
cells, endothelial cells, and their ECM. They con-
cluded that by degrading the ECM, MMP-2 and

Figure 7. MMPs in cancer metastasis. MMPs participate in most steps of the cancer metastasis process. (1) Formation of metastatic

cells at the primary tumor. (2) Intravasation of metastatic cells into the blood circulation. (3–6) Extravasation of metastatic cells across

the blood–brain barrier into the brain. (7) Tumor cell migration in the brain. (8) MMPs contribute to the tumor microenvironment and

tumor angiogenesis.
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MMP-9 are determining factors of glioma invasive-
ness and angiogenesis.271 Other studies in cancer
cells showed that CD44 captures MMP-2 and
MMP-9 at the tumor cell surface, where MMPs
then locally digest the ECM surrounding the tumor
cells during extravasation.272,273

Other MMPs might also contribute to ECM prote-
olysis. While conclusive in vivo proof in support of
this is still missing, there are many findings that
point in this direction. Shiomi et al.276 reported
increased MT1-MMP mRNA and protein levels in
resected glioblastoma tissue compared to non-tumor
control tissue. MT1-MMP levels correlated with
pro-MMP-2 activation and tumor malignancy and
the authors speculated that MMP-2 and MT1-
MMP likely contribute to glioma invasion through
degrading brain ECM proteoglycans and glia limit-
ans. Nakada et al.274 observed increased MT1-MMP
and MT2-MMP mRNA and protein levels in astro-
cytomas compared to control brain tissue and con-
cluded that both activate MMP-2, which then
degrades the ECM. Other groups detected that
MT3-MMP directly cleaves ECM components such
as type III collagen, proteoglycan, and interstitial
collagens.275,276 These findings are key for cancer
metastasis and invasion since they result in ECM
digestion.

7. Metastatic cell migration: for a secondary tumor to
form, cancer cells require space when settling in new
tissues. This space is likely generated through MMP-
mediated ECM degradation and remodeling. In this
context, Belien et al.277 showed MT1-MMP digest-
ing axonal myelin proteins that inhibit cell migration
and neurite outgrowth. Given that invasive glioma
cells preferentially migrate along white matter fiber
tracts and that MT1-MMP degrades cell migration-
inhibiting proteins that are embedded within white
matter fiber tracts, these observations suggest that
MT1-MMP facilitates cancer cell migration, thereby
increasing glioma malignancy.

8. MMPs in the tumor microenvironment and tumor
angiogenesis: increasing evidence suggests MMPs
establish and maintain a microenvironment that sup-
ports tumor survival and growth. MMPs facilitate
cancer cell proliferation by regulating cytokines,
growth factors, and cell adhesion molecules that
attract tumor cells and support metastatic cell
spreading.255 Thus, increased MMP levels are con-
sidered to correlate with increased tumor malig-
nancy, and studies report that MMP mRNA,
protein, and activity levels are increased in
cancer.255,256 Xu et al.278 observed increased MMP-
1 protein levels in gliomas compared to levels in
resected brain tissue from epilepsy patients. Levels
of MMPs-1, -2, -3, -7, -8, -9, -13, MT1-, 2-, 3-, 5-,

and MT6-MMP were also increased in brain tumors
compared to non-cancerous brain tissue.253,274,279,280

The same MT-MMPs activate proMMP-2 and
proMMP-13, and activity and protein expression
levels of those MT-MMPs correlate with pro-
MMP-2 activation in gliomas, and thus, with
tumor malignancy.256,279,280

MMPs also contribute to angiogenesis, which is crit-
ical for the tumor microenvironment because blood
vessels supply tumors with oxygen and nutrients,
thereby supporting tumor survival, growth, and
increasing tumor malignancy.58,110,281 Angiogenesis
is based on endothelial cell migration into surround-
ing connective tissues and MMPs are critical in this
process.282,283 MMPs degrade the ECM, release
ECM-sequestered pro-angiogenic compounds such
as vascular endothelial growth factor, process
growth factors, integrins, and adhesion molecules,
thereby balancing pro- and anti-angiogen-
esis.58,110,281 Tumor-induced angiogenesis is import-
ant to sustain growth of solid tumors and the
functional roles of MMPs in tumor angiogenesis
are well established.85,93 For example, MMPs help
recruit pericytes, which are localized in tumor blood
vessels and are critical for the development of a func-
tional vascular network. MMPs participate in sev-
eral steps of the pericyte recruitment process. First,
MMPs degrade the ECM to allow pericyte invasion.
Second, MMPs stimulate pericyte proliferation and
protect pericytes from apoptosis. Third, MMPs help
recruit bone marrow-derived stem cells, which differ-
entiate into pericytes.86

Angiogenesis is essential for tumor growth and
blocking angiogenesis is considered a valid strategy
to control malignant tumors. Thus, MMPs can be
beneficial in cancer due to their anti-angiogenic
effect that is based on processing growth factors,
integrins, and adhesion molecules. For example,
tumor angiogenesis is reduced in integrin-a1-null
mice compared to wild-type mice.87 Integrin-a1-
null mice overexpress MMP-9, which cleaves angios-
tatin from plasminogen, and angiostatin inhibits
endothelial cell growth, resulting in tumor growth
inhibition.87

MMPs also influence the tumor microenvironment
by increasing the permeability of the vascular endo-
thelium in brain tumors, which is then referred to as
‘‘blood-tumor barrier’’. Thus, the blood-tumor bar-
rier is leaky compared to the healthy, intact blood–
brain barrier, which helps supply the tumor with an
increasing demand of nutrients.284,285 Noell et al.286

showed increased MMP-2, -3, and -9 immunoreac-
tivity in brain slices of human primary glioblastomas
compared to non-tumor brain tissue and assumed
blood–brain barrier leakage in this area. Studies
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from other groups detected increased proMMP-2
and proMMP-9 levels in the CSF of dogs with intra-
cranial tumors compared to healthy dogs.287,288

Turba et al.288 attributed increased CSF proMMP-
9 levels to the recruitment of leukocytes by the
tumors and speculated that MMP-9 likely facilitated
leukocytes bypassing the blood–brain barrier in
order to reach the tumor, and that those leukocytes
secreted MMP-9 into the CSF.

In conclusion, MMPs are critical in many aspects of
brain cancer. Their main role lies in facilitating metas-
tasis and angiogenesis, which makes them interesting
targets for brain cancer treatment and prevention of
secondary brain tumors.

MMP inhibition as a therapeutic strategy

Pharmacological inhibition of MMPs is a potential
therapeutic strategy for the treatment of CNS dis-
orders. MMP inhibitors such as marimastat, batima-
stat, and doxycycline could potentially be used in
patients. Currently, however, the only FDA-approved
MMP inhibitor is the tetracycline analogue doxycycline
(Periostat�) for the treatment of periodontal dis-
ease.289–291 The major obstacle hindering the develop-
ment of MMP inhibitors for clinical use in patients is
our lack of knowledge and understanding of the com-
plex MMP biology and the role MMPs play in CNS
disorders such as cerebral aneurysm, epilepsy, AD, and
PD. Nonetheless, there is a wealth of preclinical data
that support MMP inhibition as a treatment strategy in
MS, stroke, and brain cancer.

First, a number of MMP inhibitors decrease the
incidence and severity of EAE in animal MS
models.145,292–295 The MMP inhibitor Ro31-9730 sup-
pressed EAE in rats,295 and minocycline reduced
MMP-9 protein and activity in T cells and suppressed
EAE in mice.292 Second, preclinical data from various
mouse and rat cancer models including colon and
breast cancer showed that batimastat reduced tumor
growth, number, and occurrence of secondary lung
and lymphatic metastases.296–299 Third, MMP inhib-
ition with GM6001 or BB-94 in rodent stroke models
shortly (hours) after stroke reduced edema, infarct size,
and the number of hemorrhagic events.180,185,300,301

Long-term (days) MMP inhibition with the MMP-inhi-
bitor BB-1101 for up to 48 h after stroke in rats reduced
barrier leakage, but function in neurologic and behav-
ioral tests did not improve.302 Inhibiting MMPs with
FN-439 or BB-94 in a rat stroke model for one week
even aggravated ischemic brain injury and seemed to
halt functional recovery.191

Even though MMP inhibition seems promising in
animal models, this has not or only partially been

demonstrated in clinical studies. In an MS trial,
16 patients with relapsing-remitting MS were treated
with a doxycycline/interferon combination for
4 months (NCT00246324303). Doxycycline/interferon
treatment reduced brain lesions, which correlated
with reduced MMP-9 serum levels and improved post-
treatment EDDS values with only one patient relap-
sing. Overall, doxycycline/interferon treatment was
considered effective, safe, and well-tolerated; it was
concluded that a trial with a larger patient cohort
should be conducted. However, a report on a follow-
up trial has thus far not been published.

In a stroke trial, minocycline was given with/
without tPA to 60 patients within 6 h after acute
ischemic stroke (NCT00630396304). The mean baseline
NIH Stroke Scale score was 8.5� 5.8 (moderate stroke).
Minocycline did not cause severe hemorrhages in tPA-
treated patients, was concluded to be safe and well-
tolerated up to 10mg/kg, i.v. alone and in combination
with tPA, and was considered ideal for a tPA combin-
ation therapy. In another clinical study, Lampl et al.305

showed that minocyclin significantly improved patient
outcomes. Specifically, NIH Stroke Scale and Rankin
Scale scores were significantly lowered, and the Barthel
Index was significantly increased. Moreover, partici-
pants are currently being recruited for a study testing
the safety and efficacy of minocycline in acute cerebral
hemorrhage (MACH trial; NCT01805895).

Lastly, several clinical studies testing MMP inhib-
ition in brain cancer have been conducted. In two
phase-II trials, a combination of marimastat and
temozolomide was tested in recurrent GBM and gli-
omas.306,307 These trials showed that maristamat/temo-
zolomide appears to increase progression-free survival
(PFS): at six months, PFS was 39% for GBM (target
PFS: 10%) and 54% for glioma (target PFS: 40%) com-
pared to temozolomide treatment alone. Other brain
cancer trials with MMP inhibitors showed no improve-
ment. Prinomastat/temozolomide compared to temozo-
lomide alone did neither improve the one-year survival
rate nor PFS (NCT00004200, Pfizer). Likewise, phase I
and II trials with theMMP inhibitor COL-3 in recurrent
high-grade gliomas do not warrant further studies
(NCT00004147308,309). In addition, clinical trials testing
more than 50MMP inhibitors for the treatment of cancer
have all failed.310–322 Vandenbrouke and Libert319 sum-
marized the reasons for failure, which included the com-
plexity of MMP biology and lack of MMP knowledge.
The authors also listed suboptimal trial design, inad-
equate clinical endpoints, use of metabolically unstable
MMP inhibitors, poor oral bioavailability, no effect,
toxic adverse effects, and discrepancies between pre-
clinical animal models and human patients.319

In summary, while much effort has gone into MMP
research over the decades, the field is still far away from
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a therapeutic breakthrough. Thus, more work remains
to be done to test if MMP inhibition is a viable thera-
peutic strategy.

Conclusion and future perspectives

Here, we review and summarize current knowledge and
understanding of the role MMPs play in health and dis-
ease in the brain, particularly the blood–brain barrier.
While we know that MMPs participate in important
neurophysiological functions and have basic under-
standing of their role in pathological conditions such as
neuroinflammation, MS, stroke, and brain cancer, we
know little about MMPs in other CNS disorders such
as cerebral aneurysms, epilepsy, AD, and PD.

The picture that emerges is complex: a large number
of diverse MMPs covers a broad spectrum of different
functions in various physiological and pathophysio-
logical processes resulting in a wide range of effects
with varying impact. These MMP effects can be both
beneficial and detrimental in the same disease depend-
ing on location, time point, and other factors. Thus,
MMP expression and functional activity vary signifi-
cantly and are context-dependent. However, one pat-
tern all the diseases mentioned here have in common is
neuroinflammation that involves MMPs.

From what we know today, MMP inhibition as an
(additional) therapeutic option is problematic and has a
history of failure, but is still discussed for the treatment
of CNS disorders. Considering the knowledge gap in
MMPs, more research needs to be done while avoiding
the mistakes of the past. Specifically, research mainly
focused on MMP-2 and MMP-9 needs to be expanded
to other MMPs to understand the role each MMP plays
in health and disease and to gain better insight into
MMP biology in general. For example, elucidating
the mechanisms responsible for MMP regulation
could provide new opportunities for therapeutic inter-
vention. In addition, specific and selective MMP inhibi-
tors that can be used safely with no or only minor
adverse effects need to be identified.

Clearly, we are only beginning to understand MMP
biology in the larger context of health and disease. In
the future, it will be critical to assess if MMPs can be
attractive therapeutic targets to advance the treatment
of neurodegenerative diseases.
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